
Architectural Blueprints:
Moving your content
management into
the cloud

Architectural Blueprint 1: Standard Magnolia deployment	 3	
	 AWS services used	 3
	 Advantages	 4
	 Disadvantages	 4
	 Recommendations	 4
	 Achieving autoscaling on AWS	 4
	 Tooling		 7

Architectural Blueprint 2: Magnolia + content source target	 8	
	 AWS services used	 9
	 Advantages	 9
	 Disadvantages	 9
	 Recommendations	 10
	 Tooling		 10	

Architectural Blueprint 3: Magnolia with JCR clustering	 11
	 JCR clustering caveats	 11
	 Advantages	 12
	 Disadvantages	 12
	 Recommendations	 13
	 AWS services used	 13
	 Autoscaling recipe when using a clustered JCR repository	 14
	 Autoscaling recipe with JCR clustering	 15
	 Tooling		 15	

Architectural Blueprint 4: Magnolia with RabbitMQ activation	 16	
	 Content synchronization and RabbitMQ activation	 17
	 Content synchronization coordination	 18
	 Handling out-of-sync public instances	 18
	 Recommendations	 19
	 AWS services used	 19
	 Autoscaling recipe with RabbitMQ activation	 19
	 Tooling		 20	

Contact us		 21

Table of contents

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

2

Architectural Blueprint 1: Standard Magnolia deployment

Enterprises today increasingly want to tap the benefits of moving their
digital ecosystems to the cloud. A key piece in that ecosystem is their
content management system (CMS).

MAGNOLIA AUTHOR

Private subnet

EC2 instance RDS instance

Public subnet

Using Amazon Web Services (AWS) and Magnolia
CMS as an example, we offer four architectural
blueprints for optimizing the deployment to
ensure seamless integration. We discuss
the advantages and disadvantages of each
approach and offer recommendations to achieve
autoscaling for high-performance and high-
traffic scenarios.

The four blueprints cover:

1. Standard CMS deployment
2. CMS deployment with content source target
3. CMS deployment with JCR clustering
4. CMS deployment with RabbitMQ

This white paper, the first of the four blueprints,
looks at the general principles of deploying a
CMS into the cloud environment. While using
AWS and Magnolia as a case study, the lessons
learnt can be applied to other enterprise-level
CMS deployments in the cloud.

This blueprint shows the typical way of deploying
Magnolia, whether in AWS or in another
cloud service.

The blueprint shows the standard Magnolia
architecture: Magnolia public instances are
registered with Magnolia author instance.
The Magnolia author instance uses transactional
publication to push new content from the author
to its public instances.

AWS services used
• �AWS Cloudwatch events (for autoscaling

notifications)
• �AWS Lambda functions (for coordination and

content synchronization)
• �AWS SNS notifications (optionally for invoking

Lambda functions)
• �AWS SSM agent (for executing commands on

remote EC2 instances, optionally for executing
backups and restoring backups)

• �AWS S3 (for storing backups)

ELASTIC LOAD BALANCER

JCR

EC2 instance

Local 08

PUBLIC

JCR

EC2 instance

Local 08

PUBLIC

JCR

EC2 instance

Local 08

PUBLIC

JCR

EC2 instance

Local 08

PUBLIC

JCR

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

3

Advantages
Minimizes the number of Magnolia
servers needed
No standby Magnolia instances (and licenses)
are used.

No major dependencies on AWS services
While some kind of orchestration capability is
needed to bring up a new Magnolia public
instance, the architecture does not use many
AWS services to handle autoscaling scenarios.

Disadvantages
May not be suitable for scaling for load
If a new Magnolia public instance is being
started to handle increased demand, making a
backup on an existing Magnolia instance will
impose a certain load on the public instance
being backed up. If the load on the public
instance is high, running a backup on the
instance may cause it to become unresponsive
and AWS autoscaling may launch another EC2
instance to take its place, thus causing a
cascading series of failures.

AWS limits during autoscaling
Long-running AWS Lambda functions may run
into the maximum execution time limit for
Lambda functions: 300 seconds. Backing up and
restoring a large JCR repository can take some
time depending on how large the JCR repository
is. Waiting for Magnolia to start may take some
time, depending on what AWS machine type is
used, depending on whether the database used
by the JCR repository is a local database or an
RDS database. All that time to perform possibly
long-running tasks could exceed the maximum
execution time for Lambda functions.

Backing up Magnolia from the command line
or as a scheduled job could fail
If a write-lock in the JCR repository is
encountered during the backup, the backup
will stop and report an error. You can run a
backup with additional parameters—to retry a
set number of times and wait a specified time
between retries—but a backup could still fail,
complicating autoscaling scenarios.

Recommendations
Autoscaling
This blueprint is recommended for small
to medium-sized content repositories:
synchronizing Magnolia content depends on
how much content there is to synchronize
and will affect how quickly a Magnolia instance
will be available in an autoscaling scenario.

Recommended for five Magnolia public
instances or less
More than five public instances subscribed to a
single Magnolia author instance may suffer from
slow publishing and performance load affecting
Admin Central on the Magnolia author.

Achieving autoscaling on AWS
When bringing up a new Magnolia public
instance during autoscaling, the new public
instance has to get the same content as the
other public instances. There are several ways
to synchronize the content on the new public
instance:

• �Use the Magnolia Backup module to make a
backup of the JCR repository on an existing
Magnolia public instance and restore the
backup on the new public instance.

• �Export the JCR content from an existing
Magnolia public instance and import it on the
new public instance.

• �Copy the JCR content from the database and
file system used by an existing Magnolia
instance to the database and file system of
the new public instance.

• �Use the Magnolia Synchronization module
to synchronize all published content from
the Magnolia author instance to the new
public instance.

• �Restore most of the content using a
previously made backup and use the Magnolia
Synchronization module to restore any content
changed since the backup.

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

4

Each of the above techniques have pluses and minuses:

Plus  Minus

Backup and restore
using the Magnolia
Backup module

Copies and restores both JCR content
stored on the file system and in a database.

JCR repository configuration of the backup
target can be different from the JCR
repository configuration of the new public
instance; the Backup module can handle
different JCR repository configurations.

Backup and restore can be done while
Magnolia is not running.

All JCR content is backed up or restored;
can’t backup and restore individual JCR
workspaces.

Backup may fail if simultaneously reading
or writing to the JCR repository; however,
backups may be set up to automatically
retry on failure.

Export/Import of JCR
content

Can export and import individual JCR
workspaces.

Can handle differing JCR repository
configuration between the backup target
and the new public instance.

Magnolia must be running when exporting
JCR content or when importing JCR
content.

Content is copied exactly, including IDs of
each copied item.

Copying JCR content
from database and
file system

Faster than other methods (backup/restore
and import/export).

Can be done when Magnolia is not running.

JCR repository configuration must be
identical between Magnolia public
instances.

Is a two-step process that must handle
failure at either step (database copy fails,
file system copy fails).

Synchronize JCR
content from author
instance to new
public instance

Synchronization can be targeted to
selected JCR workspaces.

Magnolia author has to send all content
to the new public instance, possibly a
significant performance load.

Synchronize JCR
content with backup
and synchronization

Content synchronization can be split
between restoring a backup and using
synchronization of content changes made
since the backup.

Minimizes amount of time spent
synchronizing content during Lambda
function execution.

Minimizes load on Magnolia author when
synchronizing content.

 Is a two-step process that must handle
failure at either step (backup restore fails,
synchronization fails).

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

5

Recommended: Autoscaling recipe using backup
and synchronization
In this recipe, the step of making a backup (and
the time to make a backup) is avoided. The most
recent backup is used and any content changed
since the backup is synchronized using the
Magnolia Synchronization module.

Step 1. AWS Lambda function restores most
recent backup on new public instance:

• �Select most recent backup available.
• �Restore selected backup on new public

instance.
• �Register new public instance as a subscriber

on Magnolia author instance.
• �Launch Magnolia on new public instance.

	
Step 2. New public instance synchronizes
modified content with Magnolia author:

• �When Magnolia is running and ready, request
the Magnolia author to synchronize selected
content with the new public instance.

	
Step 3. Once the new Magnolia public has been
synchronized, add it to the load balancer.
Note: the backup selection and restore in Step 1
could be performed by a user data script when
the new public instance is started up.

Basic autoscaling recipe using backup/restore
In this recipe, most of the coordination and work
is done by a Lambda function. The Lambda
function receives autoscaling events from an
AWS SNS queue.

The Lambda function is responsible for making
and restoring the backup on the new instance,
registering the new public instance with the
Magnolia author instance and ensuring that no
publications are done on the author instance
while the new public instance is starting up.

Step 1. AWS Lambda function sets up the new
public instance:

• �Select an existing public instance
for backing up.

• �Start publication freeze on the
Magnolia author.

• �Make a backup on the selected public instance
and upload it to a S3 bucket.

• �Download designated new backup from S3
on the new public instance.

• �Restore new backup on the new public
instance.

• �Register new public instance as a subscriber
on Magnolia author instance.

• �Stop publication freeze on the Magnolia author.

	
Step 2. New public instance starts Magnolia:

• �Launch Magnolia.

	
Step 3. Once the new Magnolia public instance is
up and running, add it to the load balancer.

The final step of adding the new public instance
could be triggered by either an AWS Lambda
function (triggered by posting a notification to an
SNS topic).

Variation: autoscaling recipe using
export/import
This recipe uses export/import of JCR content
to synchronize content to a new Magnolia
public instance.

Step 1. AWS Lambda function sets up the new
public instance:

• �Select an existing public instance for export.
• �Start publication freeze on the Magnolia

author.
• �Export content from selected workspaces and

upload resulting export files to a S3 bucket.

	
Step 2. New public instance starts Magnolia:

• �Launch Magnolia.
• �Download export files from S3 on the new

public instance.
• �Import export files into Magnolia.

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

6

Step 3.

• �Register new public instance as a subscriber
on Magnolia author instance.

• �Stop publication freeze on the Magnolia author.
• �Add new public instance to the load balancer.

The final step of adding the new public instance
could be triggered by either an AWS Lambda
function (triggered by posting a notification to an
SNS topic) or the new instance itself.

	
Step 1. AWS Lambda function restores most
recent backup on new public instance:

• �Launch Magnolia on new public instance.

	
Step 2. New public instance synchronizes
modified content with Magnolia author:

• �When Magnolia is running and ready, request
the Magnolia author to synchronize selected
content with the new public instance.

	
Step 3. Once the new Magnolia public has been
synchronized, add it to the load balancer.

While this scenario seems to be the simplest,
relying on synchronization alone puts the most
load on the Magnolia author instance and on the
new Magnolia public instance. It also makes the
step of adding the new Magnolia public instance
to the public load balancer more difficult:
Magnolia must be up and running on the new
instance and the synchronization between the
Magnolia author instance and public must be
finished before the instance is ready to be added
to the load balancer.

Tooling
The following Magnolia features and extensions
will help in building this blueprint:

• �Magnolia Backup module: back up and restore
a JCR repository

• �Magnolia Synchronization module:
synchronize content between a Magnolia
author and public instance

• �Magnolia Services auto-license module:
installs your Magnolia license and avoids the
license prompt on first start-up

• �Magnolia Services subscription tools
modules: create and delete Magnolia
subscribers

• �Magnolia Services publication freeze
modules: allow and disallow publication
on a Magnolia author

More about Magnolia modules:
https://documentation.magnolia-cms.com/
display/DOCS56/Modules

More about Magnolia Extensions:
https://wiki.magnolia-cms.com/display/EX/
Magnolia+Extensions

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

7

https://documentation.magnolia-cms.com/display/DOCS56/Modules
https://documentation.magnolia-cms.com/display/DOCS56/Modules
https://wiki.magnolia-cms.com/display/EX/Magnolia+Extensions
https://wiki.magnolia-cms.com/display/EX/Magnolia+Extensions

Architectural Blueprint 2: Magnolia + content source target

Enterprises today increasingly want to tap the benefits of moving
their digital ecosystems to the cloud. A key piece in that ecosystem is
their content management system (CMS).

Using Amazon Web Services (AWS) and
Magnolia CMS as an example, we offer four
architectural blueprints for optimizing the
deployment to ensure seamless integration.
 We discuss the advantages and disadvantages
of each approach and offer recommendations
to achieve autoscaling for high-performance
 and high-traffic scenarios.

The four blueprints cover:

1. Standard CMS deployment
2. CMS deployment with content source target
3. CMS deployment with JCR clustering
4. CMS deployment with RabbitMQ

This white paper, the second of the four
blueprints, looks at the general principles of
deploying a CMS with content source target.

While using AWS and Magnolia as a case study,
the lessons learnt can be applied to other
enterprise-level CMS deployments in the cloud.

This blueprint is a twist on the standard
Magnolia deployment blueprint. In that blueprint,
we recommend using the Magnolia Backup
module or the Magnolia Synchronization module
separately or in combination to synchronize the
content on a new Magnolia public instance.
Content synchronization of a new public instance
is an important step in your autoscaling recipe.

Running a backup using the Magnolia Backup
module on a live Magnolia instance has a risk:
the backup may fail. To produce a consistent
backup, the Backup will stop if it encounters a
lock in the JCR repository.

MAGNOLIA AUTHOR

Private subnet

EC2 instance RDS instance

Public subnet

EC2 instance

Backup target

Local 08

PUBLIC

ELASTIC LOAD BALANCER

EC2 instance

PUBLIC

EC2 instance

PUBLIC

EC2 instance

PUBLIC

EC2 instance

PUBLIC

JCR

JCR

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

8

You can run a backup to retry if a lock is
encountered (see the retryTimeout and
maxRetries parameters to the backup command
here: https://documentation.magnolia-cms.com/
display/DOCS56/Backup+module#Backupmod-
ule-Backupcommand) but you can avoid or
minimize the chance a backup will fail by using
this blueprint.

There is another consideration when running a
backup on a live Magnolia public instance:
making a backup on a live Magnolia instance
adds some load, perhaps at an inopportune
moment if a new Magnolia is being launched to
meet increased demand.

The content source target—a Magnolia public
instance, registered as a subscriber with
the Magnolia author instance—is not publicly
accessible and is not serving content to
requests outside of the private subnet where
it resides. The content source target is not in
the autoscaling group controlling the public
instances in the load balancer.

This blueprint avoids the problems with making a
backup on a Magnolia public that is also serving
content.

Having a content source Magnolia instance gives
you two options:

• �Shutting down the content source instance
when backing up to guarantee a successful
backup

• �Running a backup on an unloaded content
source

A standby Magnolia instance—the content
source above—is not serving content, thus
increasing the chance that a backup will not fail
because the instance is busy, and will not cause
a cascading failure by backing up a Magnolia
public instance that is itself a member of the
same autoscaling group.

The autoscaling recipes are much the same,
slightly simplified as there is only the content
source target used for making backups.

AWS services used
• �AWS Cloudwatch events (for autoscaling

notifications)
• �AWS Lambda functions (for coordination

and backup)
• �AWS SNS notifications (for invoking Lambda

functions)
• �AWS SSM agent (for executing commands on

remote EC2 instances, executing backups and
restoring backups)

• �AWS S3 (for storing backups)

Advantages
Reduced time to synchronize content of a new
Magnolia instance

Separation of concerns
Decreases or avoids the chance that a backup
will fail on the backup target, causing a failure
during autoscaling. Backup of content is a
separate task from starting up a new Magnolia
instance.

Robustness
Prevents a cascading failure since the backup
target is outside the autoscaling group for
Magnolia public instances. Magnolia public
instances serving content do not have to be set
up to make backups.

Disadvantages
A single point of failure for autoscaling
If the backup target is not available for any
reason, an autoscaling recipe that relies on
making a backup on the backup target would fail
or have to handle that contingency (say, by
using synchronization alone to initialize a new
Magnolia public instance).

AWS limits during autoscaling
Restoring a large JCR repository can take some
time, depending on how large the JCR repository
is. Restoring the content repository from a
backup may exceed the maximum execution
time for a AWS Lambda function if the content
repository is too large.

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

9

https://documentation.magnolia-cms.com/display/DOCS56/Backup+module#Backupmodule-Backupcommand
https://documentation.magnolia-cms.com/display/DOCS56/Backup+module#Backupmodule-Backupcommand
https://documentation.magnolia-cms.com/display/DOCS56/Backup+module#Backupmodule-Backupcommand

Recommendations
Autoscaling
This blueprint is recommended for small
to medium-sized content repositories.
Synchronizing Magnolia content depends on
how much content there is to synchronize
and will affect how quickly a Magnolia instance
will be available in an autoscaling scenario.

Recommended for five Magnolia public
instances or less
More than five public instances subscribed to a
single Magnolia author instance may suffer from
slow publishing and performance load affecting
Admin Central on the Magnolia author.

Recommended: Autoscaling recipe using
backup and synchronization
In this recipe, the step of making a backup (and
the time to make a backup) is avoided. The most
recent backup is used and any content changed
since the backup is synchronized using the
Magnolia Synchronization module.

This recipe assumes the content source
Magnolia instance has been set up to make
regularly scheduled backups, either as
scheduled tasks within Magnolia or as backups
triggered outside of Magnolia, for example as a
cron job or a scheduled AWS Lambda execution.

Step 1. AWS Lambda function restores most
recent backup on new public instance:

• �Select most recent backup available (from a S3
bucket or shared volume).

• �Restore selected backup on new public
instance.

• �Register new public instance as a subscriber on
Magnolia author instance.

• �Launch Magnolia on new public instance.

	
Step 2. New public instance synchronizes
modified content with Magnolia author:

• �When Magnolia is running and ready, request
the Magnolia author to synchronize selected
content with the new public instance.

	

Step 3. Once the new Magnolia public has been
synchronized, add it to the load balancer.

Note: the backup selection and restore in Step 1
could be performed by a user data script when
the new public instance is started up instead
of a Lambda function.

Tooling
The following Magnolia features and extensions
will help in building this blueprint:

• �Magnolia Backup module: back up and restore
a JCR repository

• �Magnolia Synchronization module:
synchronize content between a Magnolia author
and public instance

• �Magnolia Services auto-license module:
installs your Magnolia license and avoids the
license prompt on first start-up

• �Magnolia Services subscription tools
modules: create and delete Magnolia
subscribers

• �Magnolia Services publication freeze
modules: allow and disallow publication on a
Magnolia author

More about Magnolia modules:
https://documentation.magnolia-cms.com/
display/DOCS56/Modules

More about Magnolia Extensions:
https://wiki.magnolia-cms.com/display/EX/
Magnolia+Extensions

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

10

https://documentation.magnolia-cms.com/display/DOCS56/Modules
https://documentation.magnolia-cms.com/display/DOCS56/Modules
https://wiki.magnolia-cms.com/display/EX/Magnolia+Extensions
https://wiki.magnolia-cms.com/display/EX/Magnolia+Extensions

Architectural Blueprint 3: Magnolia with JCR clustering

Enterprises today increasingly want to tap the benefits of moving
their digital ecosystems to the cloud. A key piece in that ecosystem
is their content management system (CMS).

Using Amazon Web Services (AWS) and
Magnolia CMS as an example, we offer four
architectural blueprints for optimizing the
deployment to ensure seamless integration.
We discuss the advantages and disadvantages
of each approach and offer recommendations
to achieve autoscaling for high-performance
 and high-traffic scenarios.

The four blueprints cover:

1. Standard CMS deployment
2. CMS deployment with content source target
3. CMS deployment with JCR clustering
4. CMS deployment with RabbitMQ

This white paper, the third of the four blueprints,
looks at the general principles of deploying a
CMS with JCR clustering. While using AWS and
Magnolia as a case study, the lessons learnt
can be applied to other enterprise-level CMS
deployments in the cloud.

This blueprint uses JCR clustering to avoid the
tricky business of synchronizing the content
on a new Magnolia public instance: sharing a

clustered JCR repository among Magnolia
instances means all content is already there in
the shared JCR repository.

A Magnolia deployment using JCR clustering
has a single “slave” Magnolia public instance
that receives all publications from the Magnolia
author and is responsible for updating the JCR
repository. All other Magnolia public instances
share the JCR repository maintained by the slave
public instance.

JCR clustering caveats
JCR clustering doesn’t work well in every
situation. You should use JCR clustering only if:

• �The database hosting the JCR repository is
running on a separate VM

• �The amount of publications from the Magnolia
author to the public instance are infrequent

• �Any autoscaling of public instances (creating
new public instances or shutting running public
instances) must be done with care

MAGNOLIA AUTHOR

Private subnet

EC2 instance RDS instanceRDS instance

Public subnet

EC2 instance

PUBLIC PUBLICPUBLIC PUBLIC

EC2 instance

Publishing target

PUBLIC

EC2 instance EC2 instance EC2 instance

ELASTIC LOAD BALANCER

JCRJCR

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

11

• �You do not need to update Magnolia too
frequently

The database hosting the JCR repository is
running on a separate VM
The database for the shared JCR should not run
on the EC2 instance running a Magnolia public
instance; the database may be lost if the EC2
instance is shut down or destroyed.

The shared JCR repository should run on a RDS
database instance (along with provisions for
backing up and maintaining the RDS instance).

The amount of publications from the Magnolia
author to the public instance are infrequent
Every change to JCR nodes creates entries in
 a journal maintained by JCR repository.
The journal must be periodically cleaned or the
JCR repository may slow down or even become
unresponsive affecting all Magnolia public
instances sharing the repository.

Any autoscaling of public instances (creating
new public instances or shutting running public
instances) must be done with care
The application container running a Magnolia
public instance must be shut down gracefully;
the JCR repository updates its underlying
database during shutdown. If interrupted during
shutdown (or killed), the JCR repository may be
corrupted and other running Magnolia instances
sharing the JCR will be affected.

You do not need to update Magnolia
too frequently
Updating Magnolia entails writing changes to the
JCR repository, module versions and updates to
Magnolia configuration. Getting the order right is
important: changes to Magnolia configuration
should only be made once, so all Magnolia public
instances sharing the JCR repository can’t be
updated individually, this makes the deployment
of a new Magnolia version complicated and the
update steps must be done in correct order:

• �Shut down all Magnolia public instances.

• �Update the Magnolia WAR on the publishing
target and launch the publishing target.

• �Wait for the publishing target to make any
changes and updates.

• �When the publishing is ready, launch the slave
Magnolia public instances sharing the JCR
repository. (Note that the public instances will
not update or install any changes, the update of
the Magnolia publishing target has already
taken care of that.)

This complex orchestration prevents incremental
updates of Magnolia public instances sharing a
JCR repository. You can still achieve high
availability with a blue-green deployment with
two separate clusters of Magnolia public
instances each with a separate shared JCR
repository.

Advantages
There are other advantages when using JCR
clustering:

• �Registering a new Magnolia public instance as
a subscriber on the Magnolia author instance is
unnecessary: only the slaved public instance
is registered as a subscriber. Other Magnolia
instances sharing the JCR repository are not
(and shouldn’t be) registered as subscribers.

• �The time to publish content from the Magnolia
author is constant: only the slave Magnolia
public instance is the recipient of publications;
all other public instances do not receive
publications.

Disadvantages
However, there are significant downsides to
JCR clustering:

• �The shared JCR repository is a single point of
failure. If a single Magnolia instance corrupts
the JCR repository, all other Magnolia instances
sharing the repository will be affected.

• �Any problem with the clustered JCR repository
will affect all the Magnolia instances
sharing the repository. JCR repositories can
be corrupted—for example, by improperly
suiting down a Magnolia instance—and can
disrupt other Magnolia instances.

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

12

• �JCR clustering is not scalable to large numbers
(more than six) of Magnolia instances.

• �There may be performance effects as more and
more Magnolia instances are added: more
database connections are added and there may
be increased competition between Magnolia
instances for access to the JCR repository.

• �Startup of a new Magnolia instance will be
slower than a Magnolia instance using a local
database for its non-clustered JCR repository.

• �The JCR repository should be hosted on an AWS
RDS instance that is accessible to all the
Magnolia instances using the clustered JCR
repository. The more Magnolia instances
sharing the JCR repository, the bigger the
machine needed to run your RDS database.

• �The performance of the database hosting a
clustered JCR repository will affect the
performance of all Magnolia instances sharing
the JCR repository.

• �JCR clustering goes against the strategy of
making your Magnolia public instances
disposable: while a Magnolia instance itself is
disposable, the JCR repository is not. Care
must be taken when tearing down a Magnolia
instance using a clustered JCR repository;
improperly shutting down Magnolia can corrupt
the JCR repository.

And last, but far from least: you will need a
recovery plan or procedure for a clustered JCR
repository if it becomes corrupted. Magnolia
provides tools that can be used in this scenario,
such as the Magnolia Backup module and the
Magnolia Synchronization module.

Recommendations
Use an appropriately sized RDS instance to host
the shared JCR repository.

Minimize the use of file storage for JCR
workspaces. Locking in Jackrabbit for file
storage is broader and slower than locking
for a JCR repository stored in a database.

Recommended for large content repositories
No content is synchronized when starting up a
new Magnolia public instance.

Recommended for autoscaling scenarios where
fast startup of a Magnolia instance is critical
Since no content synchronization is done on
startup, this is the quickest way to get a
Magnolia instance up and running.

Recommended for five Magnolia public
instances or less
More than five public instances may overburden
the database used by the JCR repository. There
is a theoretical and practical limit to how many
Magnolia public instances can share a clustered
JCR repository. Each Magnolia instance will use
database connections and the database hosting
the clustered JCR repository will be unable to
efficiently serve all connections.

Recommended for applications needing less
responsiveness
A Magnolia public instance sharing a JCR
repository hosted on a remote RDS database will
be slower than a Magnolia public instance using
a private JCR repository hosted on a database
running on the local machine. Scaling up to a
large RDS instance will not necessarily affect
transmission times of JCR data to and from the
database.

AWS services used:
• �AWS Cloudwatch events (for autoscaling

notifications)
• �AWS Lambda functions (for coordination

and backup)
• �AWS SNS notifications (for invoking Lambda

functions)
• �AWS SSM agent (for executing commands

on remote EC2 instances, executing backups
and restoring backups)

• �AWS EFS (shared journaling for JCR clustering)

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

13

Autoscaling recipe when using a clustered
JCR repository
Unlike previous recipes, this recipe contains no
content synchronization step because it assumes
there is a clustered JCR repository already
available.

JCR clustering in Magnolia is set up through the
Jackrabbit configuration used by Magnolia.

There are several key pieces of configuration set
in the Jackrabbit configuration:

• �The JDBC connection details for connecting to
a shared database

• �A unique cluster ID (unique among Magnolia
instances sharing the JCR cluster)

• �Shared file systems for cluster journals

The Jackrabbit configuration is usually part of
your deployable Magnolia WAR file, but can
contain configuration specific to the Magnolia
instance being started.

There are several ways to go about this:

• �Modify the Jackrabbit configuration for the new
public instance, build a new WAR and deploy
(not recommended)

• �Modify the Jackrabbit configuration within your
WAR and deploy it (not recommended)

• �Set Jackrabbit configuration through Java
system properties on the Magnolia instance
(recommended)

Property placeholders in the Jackrabbit
configuration file will be replaced with their
system property values when Magnolia is
starting up. You can use this to include a generic
Jackrabbit configuration in your Magnolia WAR
that will take their values on starting up.

For example, when using JCR clustering, your
Jackrabbit configuration must define a Cluster
element:

<Cluster id=“${magnolia.cluster.id}” syncDelay=“${magnolia.cluster.syncDelay}”>
 <Journal class=”org.apache.jackrabbit.core.journal.DatabaseJournal”>
 <param name=”revision” value=“${magnolia.cluster.revisionHome}/revision.log” />
 <param name=”driver” value=”com.mysql.jdbc.Driver” />
 <param name=”url” value=“${magnolia.jdbc.url}“ />
 <param name=”user” value=“${magnolia.jdbc.user}” />
 <param name=”password” value=“${magnolia.jdbc.password}” />
 <param name=”schema” value=”mysql” />
 <param name=”schemaObjectPrefix” value=”journal_” />
 </Journal>
</Cluster>

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

14

The cluster definition uses the following
system properties to customize the
Magnolia installation:

• �magnolia.cluster.id, a unique ID for the
Magnolia instance

• �magnolia.cluster.syncDelay, the
synchronization delay for the Magnolia instance

• �magnolia.cluster.revisionHome, the
shared home directory for the revision log

• �magnolia.jdbc.url, the JDBC URL
for the database

• �magnolia.jdbc.user, the database user
• �magnolia.jdbc.password, the database

user’s password

The values for all these properties may change
depending on your Magnolia deployment.

If you are using Tomcat, you can define system
properties through environment variables like
CATALINA_OPTS, for example:

• �-Dmagnolia.cluster.id=1675 -Dmagnolia.cluster.
syncDelay=100 ...

If you have installed Tomcat as Linux service, you
can also modify the service configuration and
add system property definitions that will be used
by Magnolia. As with CATALINA_OPTS, your
service definition can define system properties

for the JVM running Magnolia; Magnolia will
substitute the values of system properties used
in Magnolia configuration files.

Autoscaling recipe with JCR clustering
Step 1. AWS Lambda function sets up the new
public instance:

• �Define system properties for Jackrabbit
configuration (including generating a unique
cluster ID for the new instance) and save these
properties on the new instance.

• �Mount shared file systems for journals defined
for the shared JCR clustering.

• �Launch Magnolia.

	
Step 2. Once the new Magnolia public instance is
up and running, add it to the load balancer.

Tooling
No special tooling or extensions are needed to
use JCR clustering with Magnolia. However, you
should take precautionary measures like
regularly backing up your JCR repository (we
recommend using the Magnolia Backup module)
to protect your JCR repository.

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

15

Architectural Blueprint 4: Magnolia with
RabbitMQ activation

Enterprises today increasingly want to tap the benefits of moving
their digital ecosystems to the cloud. A key piece in that ecosystem
is their content management system (CMS).

Using Amazon Web Services (AWS) and
Magnolia CMS as an example, we offer four
architectural blueprints for optimizing the
deployment to ensure seamless integration.
 We discuss the advantages and disadvantages
of each approach and offer recommendations
to achieve autoscaling for high-performance
and high-traffic scenarios.

The four blueprints cover:

1. Standard CMS deployment
2. CMS deployment with content source target
3. CMS deployment with JCR clustering
4. CMS deployment with RabbitMQ

This white paper, the final of the four blueprints,
looks at the general principles of deploying a
CMS with RabbitMQ. While using AWS and

Magnolia as a case study, the lessons learnt
can be applied to other enterprise-level CMS
deployments in the cloud.

You may have noticed that there are certain
common problems in the architectural
blueprints we have presented: content
synchronization on a new Magnolia instance
and registering a subscription for a new
Magnolia public instance, for example.

Publishing content in Magnolia uses
“transactional activation”. The Magnolia author
instance ensures that all subscribed public
instances receive and save the published content.
If one of the public subscribers fails to publish
the content, the content publication is rolled
back across all public subscribers.

ELASTIC LOAD BALANCER

RABBITMQ

(standby
activation queue)

(standby
activation queue)

MAGNOLIA AUTHOR

Private subnet

EC2 instance RDS instance

Public subnet

EC2 instance

PUBLIC

EC2 instance

PUBLIC

JCR

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

16

Transactional activation guarantees that
all public subscribers are kept in sync.
Transactional activation comes at a cost:
the time to publish content is proportional
to the number of public subscribers; with
more public instances, more time will be
taken to ensure a successful publication.

Publishing content with RabbitMQ activation is
an alternative to transactional activation. It uses
RabbitMQ, an open-source messaging broker, to
deliver activation messages from the Magnolia
author to Magnolia public subscribers. RabbitMQ
allows a looser coupling between the Magnolia
author and public instances: publication with
RabbitMQ activation will not be transactional, but
the time to publish content will depend on how
many public instances are running. With
RabbitMQ activation, public instances could get
out of sync, but also makes it easier to start and
stop Magnolia public instances.

RabbitMQ activation allows many Magnolia
public instances to be connected to a single
Magnolia author without increasing the time to
publish content.

There are other benefits to RabbitMQ. Since the
Magnolia author and public instances are
decoupled, there is no need for a publication
freeze to prevent publications while a new
Magnolia public is starting. There is no need
to register the new public instance with
the Magnolia author either; the public instance
is registered with RabbitMQ, not the
Magnolia author.

To provide a robust, scalable delivery mechanism,
RabbitMQ can be set up to provide high
availability queues with federation and clustering

to ensure that the Magnolia author can always
send activation messages for distribution to
Magnolia public instances.

Content synchronization and RabbitMQ
activation
In other blueprints, we recommended a hybrid
approach to content synchronization: use the
Magnolia Backup module to restore most of your
JCR content, followed up by the Magnolia
Synchronization module to synchronize any
content changed since the last backup.

You can still use the Synchronization module
with RabbitMQ activation, but RabbitMQ
activation gives you another way to update
recently changed content.

RabbitMQ is a message broker, distributing
messages to clients through queues. Messages
stay in RabbitMQ queues until they are delivered
to clients. RabbitMQ queues that don’t have a
client will save messages until they are delivered
to a client.

RabbitMQ activation uses RabbitMQ to deliver
activation messages from a Magnolia author to
Magnolia public instances. Each Magnolia public
instance is attached to a queue, waiting for
activation messages. With RabbitMQ, you can
create “standby” activation queues without a
Magnolia public instance client. Activation
messages will be saved in the standby queue
until a public instance claims the standby
queue and RabbitMQ will deliver the activation
messages to the public instance.

MAGNOLIA AUTHOR

MAGNOLIA PUBLIC 1

EXCHANGE FANOUT

queue_pub_1

queue_pub_2

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

17

Activation messages are relatively small and
RabbitMQ is capable of managing many queues
and messages; standby activation queues could
store many hundreds or thousands of messages
in a RabbitMQ broker using minimal system
resources.

Content synchronization coordination
There is some practical limit to how many
messages can be stored in RabbitMQ queues.
At some point, the standby activation queues
must be flushed.

Standby activation queues can be used instead
of the Magnolia Synchronization module. You will
need to coordinate the backup with the standby
activation queues.

When a backup is made, the standby activation
queues should be flushed, since any publications
waiting in the standby queues will be contained
in the backup.

There are two ways you can make a scheduled
backup of a Magnolia instance:

• �By setting up a scheduled job within Magnolia
(note that Magnolia must be running to make
the backup)

• �By setting an AWS Lambda function to run
at a scheduled time (note that Magnolia doesn’t
have to be running when the backup is made)

Setting up a scheduled job in Magnolia to launch
a backup is easy; see the Magnolia Scheduler
module:
https://documentation.magnolia-cms.com/
display/DOCS56/Scheduler+module

A scheduled AWS Lambda function could launch
a Magnolia backup via the Magnolia REST API
and flush the RabbitMQ standby activation
queues. The coordination between backup and
flushing queues doesn’t even have to be precise:
with RabbitMQ activation, a Magnolia public
instance will discard any activation messages it
has already received.

Handling out-of-sync public instances
When using transactional activation, publishing
content can fail, but Magnolia guarantees all the
public instances will be in sync. Transactional
activation can fail for many different reasons:
a subscribed Magnolia instance might not be
actually running or is unable to process the
publication within a set time; the Magnolia
instance’s JCR repository is corrupted; there is a
time difference between the Magnolia author
and Magnolia public instance; and many other
reasons. Transactional activation prevents the
public instances from getting out sync, but may
also prevent any publications until a failing
Magnolia public instance is repaired or taken out
of service and its subscription is deactivated.
Unfortunately, transactional activation doesn’t
provide a convenient hook for AWS services for
detecting ailing Magnolia subscribers and
correcting them.

RabbitMQ activation provides a feedback
channel for activations: Magnolia subscribers
can report whether a publication succeeded or
failed on RabbitMQ acknowledgement. That
acknowledgement can be monitored by the
RabbitMQ monitoring app in the Magnolia author.
The monitoring app shows what activations
succeeded and failed for each Magnolia public
instance, how long an activation message stayed
in queue and how long it took for the public
instance took to process it.

The RabbitMQ monitoring app can help you see
whether Magnolia instances are in sync or not,
but the underlying notification mechanism—the
activation acknowledgement queue—can be an
integration hook for managing Magnolia public
instances with AWS services.

Here’s how: activation notifications from
RabbitMQ activations are also stored with
Magnolia in a separate JCR workspace.
Those notifications note whether an activation
succeeded or failed, how long it waited for
delivery in RabbitMQ and how long it took the
Magnolia public instance to process the
activation once RabbitMQ delivered it. All this
information could be used to identify out-of-sync
or ailing Magnolia public instances.

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

18

There are at least two ways you could tie in
activation acknowledgements to AWS services:

Within Magnolia: use the Magnolia Observation
module to watch the RabbitMQ activation
notification workspace.

When the workspace is updated with notification
that shows a problem with a Magnolia public
instance (a failed activation or a slow activation,
for example), post a notification on an AWS SNS
topic noting a problem with the Magnolia
instance. AWS Lambda functions could then
do further notifications to notify Magnolia
sysadmins or terminate the Magnolia instance
and replace it.

Outside Magnolia: build an external client to
monitor the activation acknowledgement queue
and post a notification on an AWS SNS topic
noting a problem with the Magnolia instance,
letting other AWS services (like a Lambda
function) kick in and handle the problem.

Recommendations
Recommended when running five or more
Magnolia public subscribers
RabbitMQ activation allows publications to many
public instances.

Recommended for high frequency of publication
Publishing is an expensive operation for the
Magnolia author. Using RabbitMQ greatly
reduces the load on the Magnolia author in
publishing to many public instances.

Recommended for large numbers of Magnolia
Admin Central users
Magnolia can support up to 30 to 50
simultaneous users of Admin Central. RabbitMQ
reduces the performance load when those
authors publish content.

AWS services used
• �AWS Cloudwatch events (for autoscaling

notifications)
• �AWS Lambda functions (for autoscaling

coordination)
• �AWS SNS notifications (for invoking Lambda

functions)

• �AWS SSM agent (for executing commands on
remote EC2 instances and restoring backups)

Autoscaling recipe with RabbitMQ activation
In this recipe, the logic of selection of an
available standby activation queue resides in a
Lambda function.

Step 1. AWS Lambda function sets up the new
public instance:

• �Select an available standby activation queue.
• �Launch Magnolia.
• �Wait for Magnolia to become available;

configure the instance’s RabbitMQ client
configuration to use the selected standby
activation queue.

	
Step 2. Once the new Magnolia public instance is
up and running, add it to the load balancer.

Variation: autoscaling recipe without
AWS Lambda
The logic of selecting an available standby
activation queue could be included in a Magnolia
module, so no Lambda function would be
needed.

The module could query RabbitMQ, find an
unused standby activation queue, and update its
RabbitMQ client configuration directly.

This variation avoids waiting for Magnolia to start
up before changing the RabbitMQ configuration.

Step 1. On Magnolia starting up:

• �Select an available standby activation queue
and update its RabbitMQ client configuration
directly.

	
Step 2. In a Lambda function handling the
autoscaling notification:

• �Add the new Magnolia public instance to the
load balancer.

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

19

Tooling
The following Magnolia features and extensions
will help in building this blueprint:

• �Magnolia RabbitMQ modules: publish content
with RabbitMQ

• �Magnolia Property REST API: for adjusting the
RabbitMQ client configuration

• �Magnolia Node REST API: for adjusting the
RabbitMQ client configuration

• �Magnolia Backup module: back up and restore
a JCR repository

• �Magnolia Synchronization module:
synchronize content between a Magnolia author
and public instance

• �Magnolia Observation module: get
notifications when the contents of a JCR
workspace is changed

• �Magnolia Services auto-license module:
installs your Magnolia license and avoids the
license prompt on first start-up

• �Magnolia Scheduler module: execute
commands at specified times

More about Magnolia modules:
https://documentation.magnolia-cms.com/
display/DOCS56/Modules

More about Magnolia Extensions:
https://wiki.magnolia-cms.com/display/EX/
Magnolia+Extensions

Architectural Blueprints:
Moving Your Content Management
Into The Cloud

20

https://documentation.magnolia-cms.com/display/DOCS56/Modules
https://documentation.magnolia-cms.com/display/DOCS56/Modules
https://wiki.magnolia-cms.com/display/EX/Magnolia+Extensions
https://wiki.magnolia-cms.com/display/EX/Magnolia+Extensions

Switzerland (HQ)
Magnolia International Ltd.
Oslo-Strasse 2
4142 Münchenstein (Basel)
Switzerland

+41 61 228 90 00
info@magnolia-cms.com

North America
Magnolia Americas, Inc.
168 SE 1st Street
Suite 1007
Miami, FL 33131
United States of America

(305) 267-3033
info-us@magnolia-cms.com

Spain
Magnolia España Software and
Computer Applications S.L.
Paseo de la Castellana 153, Bajo
28046 Madrid
España

+34 662 63 43 36
info-es@magnolia-cms.com

United Kingdom
Magnolia Software UK Ltd.
9 Devonshire Square, 3rd Floor
London EC2M 4YF
United Kingdom

+44 7554 041 782

Czech Republic
Magnolia Software & Services CZ s.r.o.
Chobot 1578
76701 Kromeriz
Česká Republika

+420 571 118 715
info-cz@magnolia-cms.com

Singapore
Magnolia SIngapore
7 Temasek Boulevard
Suntec Tower One, Level 44-01
038987 Singapore

+65 64 30 6778

Vietnam
Magnolia
Etown 1 Building
Unit 7.10
364 Cong Hoa Street
Tan Binh District
Ho Chi Minh City, Vietnam

+84 28 3810 6465
vietnam@magnolia-cms.com

Magnolia International Ltd.

Copyright Magnolia International Ltd. © 2018

Magnolia is a registered trademark of Magnolia International Ltd. All trademarks are the property of their respective owners. This work is licensed under a Creative Commons

Attribution-NonCommercial-NoDerivs 3.0 Unported License. Published 2017-09-25

Contact us

mailto:info%40magnolia-cms.com?subject=
mailto:info-us%40magnolia-cms.com?subject=
mailto:info-es%40magnolia-cms.com?subject=
mailto:info-cz%40magnolia-cms.com?subject=
mailto:vietnam%40magnolia-cms.com?subject=

